43 research outputs found

    DNA-Mediated Self-Assembly of Artificial Vesicles

    Get PDF
    Although multicompartment systems made of single unilamellar vesicles offer the potential to outperform single compartment systems widely used in analytic, synthetic, and medical applications, their use has remained marginal to date. On the one hand, this can be attributed to the binary character of the majority of the current tethering protocols that impedes the implementation of real multicomponent or multifunctional systems. On the other hand, the few tethering protocols theoretically providing multicompartment systems composed of several distinct vesicle populations suffer from the readjustment of the vesicle formation procedure as well as from the loss of specificity of the linking mechanism over time.In previous studies, we presented implementations of multicompartment systems and resolved the readjustment of the vesicle formation procedure as well as the loss of specificity by using linkers consisting of biotinylated DNA single strands that were anchored to phospholipid-grafted biotinylated PEG tethers via streptavidin as a connector. The systematic analysis presented herein provides evidences for the incorporation of phospholipid-grafted biotinylated PEG tethers to the vesicle membrane during vesicle formation, providing specific anchoring sites for the streptavidin loading of the vesicle membrane. Furthermore, DNA-mediated vesicle-vesicle self-assembly was found to be sequence-dependent and to depend on the presence of monovalent salts.This study provides a solid basis for the implementation of multi-vesicle assemblies that may affect at least three distinct domains. (i) Analysis. Starting with a minimal system, the complexity of a bottom-up system is increased gradually facilitating the understanding of the components and their interaction. (ii) Synthesis. Consecutive reactions may be implemented in networks of vesicles that outperform current single compartment bioreactors in versatility and productivity. (iii) Personalized medicine. Transport and targeting of long-lived, pharmacologically inert prodrugs and their conversion to short-lived, active drug molecules directly at the site of action may be accomplished if multi-vesicle assemblies of predefined architecture are used

    Simulating development in a real robot: on the concurrent increase of sensory, motor, and neural complexity

    Get PDF
    We present a quantitative investigation on the effects of a discrete developmental progression on the acquisition of a foveation behavior by a robotic hand-arm-eyes system. Development is simulated by (a) increasing the resolution of visual and tactile systems, (b) freezing and freeing mechanical degrees of freedom, and (c) adding neuronal units to the neural control architecture. Our experimental results show that a system starting with a low-resolution sensory system, a low precision motor system, and a low complexity neural structure, learns faster that a system which is more complex at the beginning

    Deep learning-based simultaneous multi-phase deformable image registration of sparse 4D-CBCT

    Get PDF
    Purpose: Respiratory gated 4D-CBCT suffers from sparseness artefacts caused by the limited number of projections available for each respiratory phase/amplitude. These artefacts severely impact deformable image registration methods used to extract motion information. We use deep learning-based methods to predict displacement vector-fields (DVF) from sparse 4D-CBCT images to alleviate the impacts of sparseness artefacts. Methods: We trained U-Net-type convolutional neural network models to predict multiple (10) DVFs in a single forward pass given multiple sparse, gated CBCT and an optional artefact-free reference image as inputs. The predicted DVFs are used to warp the reference image to the different motion states, resulting in an artefact-free image for each state. The supervised training uses data generated by a motion simulation framework. The training dataset consists of 560 simulated 4D-CBCT images of 56 different patients; the generated data include fully sampled ground-truth images that are used to train the network. We compare the results of our method to pairwise image registration (reference image to single sparse image) using a) the deeds algorithm and b) VoxelMorph with image pair inputs. Results: We show that our method clearly outperforms pairwise registration using the deeds algorithm alone. PSNR improved from 25.8 to 46.4, SSIM from 0.9296 to 0.9999. In addition, the runtime of our learning-based method is orders of magnitude shorter (2 seconds instead of 10 minutes). Our results also indicate slightly improved performance compared to pairwise registration (delta-PSNR=1.2). We also trained a model that does not require the artefact-free reference image (which is usually not available) during inference demonstrating only marginally compromised results (delta-PSNR=-0.8). Conclusion: To the best of our knowledge, this is the first time CNNs are used to predict multi-phase DVFs in a single forward pass. This enables novel applications such as 4D-auto-segmentation, motion compensated image reconstruction, motion analyses, and patient motion modeling

    Mitigation of motion-induced artifacts in cone beam computed tomography using deep convolutional neural networks

    Get PDF
    Background: Cone beam computed tomography (CBCT) is often employed on radiation therapy treatment devices (linear accelerators) used in image-guided radiation therapy (IGRT). For each treatment session, it is necessary to obtain the image of the day in order to accurately position the patient, and to enable adaptive treatment capabilities including auto-segmentation and dose calculation. Reconstructed CBCT images often suffer from artifacts, in particular those induced by patient motion. Deep-learning based approaches promise ways to mitigate such artifacts. Purpose: We propose a novel deep-learning based approach with the goal to reduce motion induced artifacts in CBCT images and improve image quality. It is based on supervised learning and includes neural network architectures employed as pre- and/or post-processing steps during CBCT reconstruction. Methods: Our approach is based on deep convolutional neural networks which complement the standard CBCT reconstruction, which is performed either with the analytical Feldkamp-Davis-Kress (FDK) method, or with an iterative algebraic reconstruction technique (SART-TV). The neural networks, which are based on refined U-net architectures, are trained end-to-end in a supervised learning setup. Labeled training data are obtained by means of a motion simulation, which uses the two extreme phases of 4D CT scans, their deformation vector fields, as well as time-dependent amplitude signals as input. The trained networks are validated against ground truth using quantitative metrics, as well as by using real patient CBCT scans for a qualitative evaluation by clinical experts. Results: The presented novel approach is able to generalize to unseen data and yields significant reductions in motion induced artifacts as well as improvements in image quality compared with existing state-of-the-art CBCT reconstruction algorithms (up to +6.3 dB and +0.19 improvements in peak signal-to-noise ratio, PSNR, and structural similarity index measure, SSIM, respectively), as evidenced by validation with an unseen test dataset, and confirmed by a clincal evaluation on real patient scans (up to 74% preference for motion artifact reduction over standard reconstruction). Conclusions: For the first time, it is demonstrated, also by means of clinical evaluation, that inserting deep neural networks as pre- and post-processing plugins in the existing 3D CBCT reconstruction and trained end-to-end yield significant improvements in image quality and reduction of motion artifacts

    Influence of the geometry on the agglomeration of a polydisperse binary system of spherical particles

    Get PDF
    Within the context of the European Horizon 2020 project ACDC, we intend to develop a probabilistic chemical compiler, to aid the construction of three-dimensional agglomerations of artificial hierarchical cellular constructs. These programmable discrete units offer a wide variety of technical innovations, like a portable biochemical laboratory that e.g. produces macromolecular medicine on demand. For this purpose, we have to investigate the agglomeration process of droplets and vesicles under proposed constraints, like confinement. This paper focuses on the influence of the geometry of the initialization and of the container on the agglomeration

    Paths in a network of polydisperse spherical droplets

    Get PDF
    We simulate the movement and agglomeration of oil droplets in water under constraints, like confinement, using a simplified stochastic-hydrodynamic model. In the analysis of the network created by the droplets in the agglomeration, we focus on the paths between pairs of droplets and compare the computational results for various system sizes

    Evolving Morphologies of Simulated 3d Organisms Based on Differential Gene Expression

    No full text
    Evolving Morphologies of Simulated 3d Organisms Based on Differential Gene Expressio

    Genome-Physics Interaction as a New Concept to Reduce the Number of Genetic Parameters in Artificial Evolution

    No full text
    This paper reports on investigations on the possible advantage of the coupling between genomes and physics of cells in artificial evolution. The idea is simple: evolution can rely on physical processes during development allowing to produce shapes without need to specify how exactly this shaping has to be done. Evolving a minimal energy surface such as soap bubbles would need only the specification of the boundary values and a homogenous interaction pattern between the cells
    corecore